## Possible expanded age indication for 9-valent HPV vaccine through age 45 years

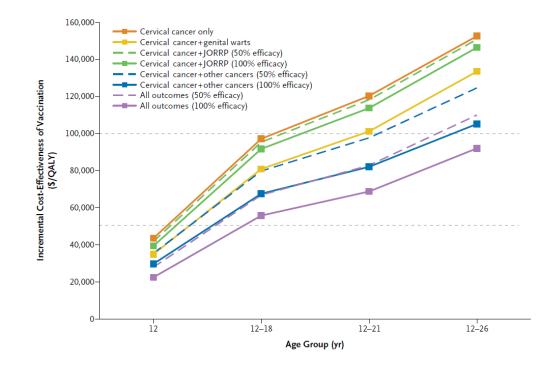
#### Considerations and ACIP HPV Vaccines Work Group plans

Lauri Markowitz, MD

**Division of Viral Diseases** 

Advisory Committee on Immunization Practices June 20, 2018

### Outline


- Introduction to policy considerations
- Overview of evidence to help assess burden/benefit
  - HPV prevalence, incidence, immunity after natural infection
- Range of policy options
- Plans for October ACIP meeting

## **Introduction to policy considerations:** Possible expanded age indication

- Available HPV vaccines are prophylactic
- HPV vaccination will have greatest impact when administered before onset of sexual activity and HPV exposure
- Over 90% of men and women are sexually active by mid 20's
- Models show cost effectiveness of HPV vaccination becomes less favorable as age at vaccination increases\*

### **Cost-effectiveness of HPV vaccination of females** in the United States

Modeling considered for vaccine policy at the beginning of the vaccination program in the United States



## **Policy considerations:**

### Possible expanded age indication

- No change in routine age for HPV vaccination
  - Age 11-12 years
  - Can be started at age 9 years
- Could impact recommendations for
  - Catch-up
  - Persons older than determined catch-up age

## Consideration of possible expanded age indication for 9vHPV through age 45 years

- Work Group will be using the Evidence to Recommendations framework
- This presentation: overview of some of the data needed to understand the burden of disease – to inform the problem and potential benefits of vaccination

## Evidenceto Recommendations framework

- PICO question and background
- Problem
- Benefits and harms
- Values
- Acceptability
- Resource use
- Feasibility of implementation
- Balance of consequences
- Type of recommendation and recommendation text

#### **Diseases associated with HPV**

- Oncogenic (high risk) types e.g. HPV 16, 18
  - Cervix cancers
  - Vagina cancers
  - Vulva cancers
  - Penis cancers
  - Anus cancers
  - Oropharynx cancers
  - High grade intraepithelial neoplasias
- Non-oncogenic types e.g. HPV 6, 11
  - Anogenital warts
  - Recurrent respiratory papillomatosis

## Burden: Estimated HPV-attributable cancers per year United States, 2010–2014

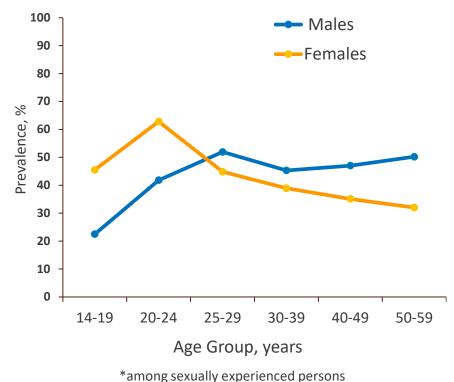
| Cancer site | Percentage<br>attributable to<br>HPV | Estimated number attributable to<br>any HPV type per year |        |        |
|-------------|--------------------------------------|-----------------------------------------------------------|--------|--------|
|             |                                      | Female                                                    | Male   | Total  |
| Cervix      | 91%                                  | 10,600                                                    | 0      | 10,600 |
| Vagina      | 75%                                  | 600                                                       | 0      | 600    |
| Vulva       | 69%                                  | 2,600                                                     | 0      | 2,600  |
| Penis       | 63%                                  | 0                                                         | 800    | 800    |
| Anus*       | 91%                                  | 3,800                                                     | 1,900  | 5,700  |
| Oropharynx  | 70%                                  | 2,100                                                     | 10,100 | 12,200 |
| TOTAL       |                                      | 19,700                                                    | 12,800 | 32,500 |

\*Includes anal and rectal squamous cell carcinomas

Sources: https://www.cdc.gov/cancer/hpv/statistics and Saraiya et al. J Natl Cancer Inst. 2015

# Possible expanded age indication: Defining the problem and benefit of vaccination

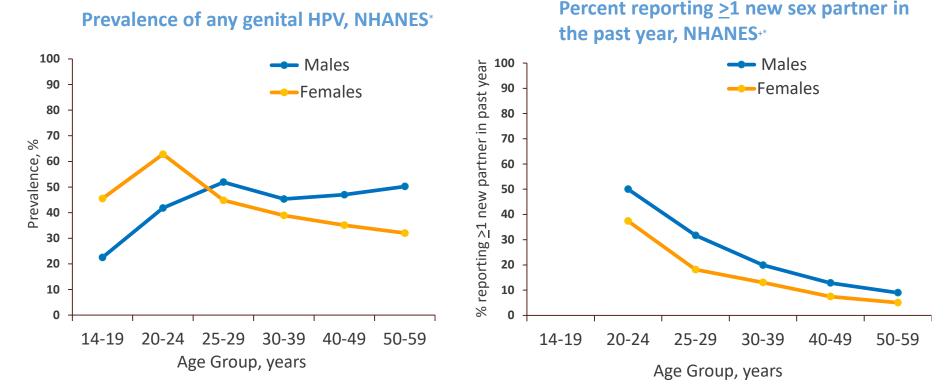
#### Benefit and potential impact of HPV vaccination is influenced by


- Likelihood of already having had vaccine-type infection
- Risk of incident infection
- Risk of development of disease from incident infection
- Immunity after natural infection
- Vaccine efficacy against reinfection

### **HPV epidemiology**

- HPV is a common sexually transmitted infection in females and males
- Prevalence and infection rates differ by age and sex
- Infection patterns differ by anatomic site
  - e.g. higher prevalence in the genital versus oral region
- Immune response to natural infection differs by anatomic site of infection
- Immune response to natural infection is stronger and more protective against re-infection in females than males

#### HPV DNA prevalence in males and females United States, 2013-2014

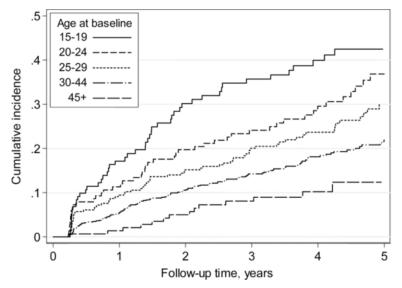

#### Prevalence of any genital HPV, NHANES\*



- High prevalence in both males and females
- In females prevalence is highest in early 20s and is lower in older age groups
- In males prevalence is similar in age groups 25-29 and older

Lewis et al, JID 2018; Gargano et al, JID 2017 NHANES, National Health and Nutrition Examination Survey

## HPV DNA prevalence and report of at least 1 new sex partner — United States, 2013-2014

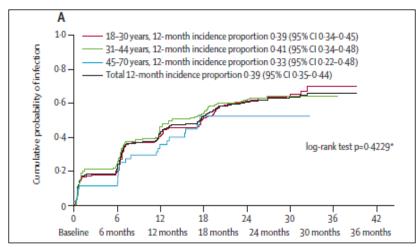



Lewis et al, JID 2018; Gargano et al, JID 2017 NHANES, National Health and Nutrition Examination Survey

## Genital HPV incidence, by age

- Study of HPV incidence among 15–85 year-old women in Columbia
- Highest cumulative risk for any HPV was in 15–19 year-olds (43%)
- Cumulative HPV incidence decreased in older age groups

#### Women: Cumulative risk of any HPV




Munoz et al. JID 2004

## **Genital HPV incidence, by age**

- Study of HPV incidence among 18–70 year-old men in U.S., Mexico and Brazil
- Incidence of any HPV did not vary significantly by age

#### Men: Cumulative risk of any HPV



Follow-up time, months

Giuliano et al. Lancet 2011 HIM study

## **New HPV infection or re-detection of previous infection?**

- In adults, incident HPV detection may be a new infection or re-detection of a previously acquired infection
  - Methodologically difficult to distinguish
  - Vaccination is expected to prevent new infections
- Several studies in females have been conducted to estimate the proportion new detections due to a new infection
  - Evaluating risk factors for a new HPV detection

### **U.S. studies of HPV incidence in mid-adult women**

|                           | Major U.S. cities<br>Winer et al. JID 2016                                                  | <b>Baltimore, MD</b><br>Rositch et al. Cancer Res 2012 |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|
| Population                | On-line daters                                                                              | OB/GYN clinic attendees                                |  |  |  |  |
| Age range, yrs            | 25–65                                                                                       | 35–60                                                  |  |  |  |  |
| New male partner          | 50%                                                                                         | 10%                                                    |  |  |  |  |
| Incident HPV<br>detection | High risk HPV<br>29.5/100 women-yrs                                                         | Any HPV<br>14/100 women-yrs                            |  |  |  |  |
|                           |                                                                                             |                                                        |  |  |  |  |
|                           | In women with new partners, 64-82% of new detections attributed to newly acquired infection |                                                        |  |  |  |  |

### **U.S. studies of HPV incidence in mid-adult women**

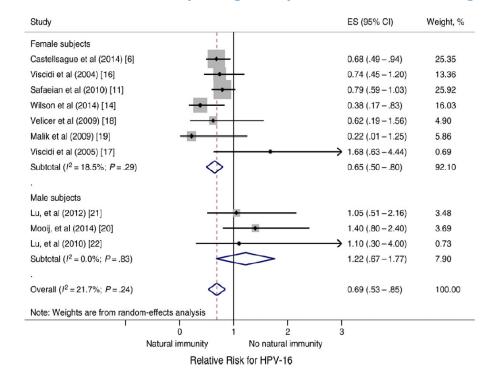
|                           | Major U.S. cities<br>Winer et al. J Infect Dis 2016 | <b>Baltimore, MD</b><br>Rositch et al. Cancer Res 2012 | <b>Seattle, WA</b><br>Fu et al. Int J Cancer 2016                                                         |
|---------------------------|-----------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Population                | On-line daters                                      | OB/GYN clinic attendees                                | Affiliated with Univ WA                                                                                   |
| Age range, yrs            | 25–65                                               | 35–60                                                  | 30–50                                                                                                     |
| New male partner          | 50%                                                 | 10%                                                    | 31%                                                                                                       |
| Incident HPV<br>detection | High risk HPV<br>29.5/100 women-yrs                 | Any HPV<br>14/100 women-yrs                            | Cumulative 6 month<br>type-specific high-risk HPV<br>Among seronegative, 1.2%<br>Among seropositive, 2.9% |

#### $\bigcirc$

- Association between recent sexual behaviors and incident DNA detection only among seronegative women
- Among seropositive women, re-detection of same type likely due to reactivation or intermittent detection of persisting infection

#### **Incident genital HPV infection in females**

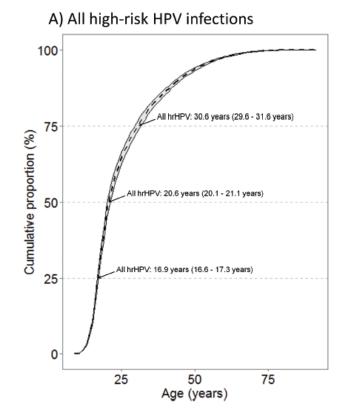
- Risk of incident HPV infection declines with increasing age
- Sex with a new partner is a risk factor for a new infection
- Proportion of new detectable HPV due to prior vs new infection varies by population and depends on past risk and new exposure
- What is risk of new infections in mid-adult women progressing to CIN2+?
  - Data from control arm of 2vHPV trial (Skinner et al. IJC 2016)
  - During 48 months, 3.6% (32/888) of infections progressed to CIN2+


#### **Incident genital HPV infection in males**

- Risk of incident genital HPV infection is relatively constant with age
- Sex with a new partner is a risk factor for a new infection
- Re-detection of the same HPV type is common
  - Less clear what proportion of new detectable HPV due to prior vs new infection

#### Naturally acquired immunity: systematic review and meta-analysis Relative risks comparing seropositive with seronegative

14 studies: 11 in females, 3 in males


Conclusion: HPV antibodies acquired through natural infection provide some type-specific protection against subsequent genital infection in females but not in males



## What proportion of cervical cancers are caused by HPV infections acquired by different ages?

Model projected that among all cervical cancers

- 50% of women acquired causal HPV infection by age 21
- 75% of women acquired causal
  HPV infection by age 31



#### Natural history and pathogenesis of oropharynx cancer

- Very few natural history studies
- Steps between oral HPV acquisition and development of HPV-positive oropharynx cancer are unknown

#### Knowns

Risk factors for oral HPV infection and HPV+ oropharynx cancer

Good estimates of oral HPV prevalence

Limited estimates of oral HPV incidence and persistence

#### Unknowns

HPV-induced precancerous lesion in the oropharynx

Time from acquisition of infection to development of cancer

Disease-relevance of infections acquired at older ages

## Burden of HPV infection and disease in special populations

HPV prevalence, incidence, HPV-associated disease higher in some populations

- Anal HPV prevalence is high in men who have sex with men (MSM) and MSM have high risk of anal cancer, particularly those with HIV infection
- Women with HIV/AIDS have significantly higher rates of cervical cancer and some other HPV-associated outcomes than women in the general population
- Work Group will review data related to special populations at a future meeting

#### **Summary**

- Based on epidemiology of HPV, the population level benefit of vaccination of mid-adults would be low compared with vaccination at younger ages
- New sex partners decrease with increasing age; sex with a new partner remains a risk for HPV infection in older age groups
- There are differences by sex in HPV prevalence, incidence, immunity after infection, and HPV-associated cancers
- Immunity after natural infection is an important determinant of potential impact of vaccination; might differ for males and females
- Updated modeling and cost effectiveness analyses will provide helpful information for policy considerations

## Possible expanded age indication for 9vHPV through age 45 years

Policy options that could be considered

- For catch-up\*
  - Retain current catch-up age
  - Extend catch-up through an older age
- For persons older than the determined catch-up age
  - No recommendation
  - Vaccination for individual decision making
  - Recommendations for specific groups

## Harmonization of upper age recommendation for males and females

- Work Group has been considering harmonization of the upper age recommendation for males and females through age 26 years
- There is strong support on the Work Group for harmonization
- Surveys of Association of Immunization Managers (AIM) and of primary care physicians indicated that > 90% support harmonization\*
- Harmonization will be considered as the Work Group moves forward to review data related to the possible expanded age indication

### **ACIP HPV Vaccines Work Group plans**

#### June 2018

- Background
- Clinical data submitted in sBLA for an extended age indication
- Considerations and Work Group plans

#### October 2018

- Epidemiology of HPV/burden of disease
- Modeling and cost effectiveness
- Values, acceptability and other elements of the *Evidence to Recommendations* framework
- Policy options

#### ACIP HPV Vaccines Work Group

<u>ACIP Members</u> Peter Szilagyi (Chair) Cynthia Pellegrini Jose Romero

<u>Ex Officio Members</u> Jeff Roberts (FDA) Joohee Lee (FDA)

<u>CDC Lead</u> Lauri Markowitz Liaison Representatives Vinita Dubey (NACCI) Linda Eckert (ACOG) Sandra Fryhofer (ACP) Amy Middleman (SAHM) Chris Nyquist (AAP) Sean O'Leary (PIDS) Robin O'Meara (AAFP) Patricia Whitley-Williams (NMA) Jane Zucker (AIM)

<u>Consultants</u> Joseph Bocchini Tamera Coyne-Beasley John Douglas Sam Katz Allison Kempe Aimee Kreimer (NCI) Debbie Saslow (ACS) Rodney Willoughby

#### **CDC Contributors**

Jorge Arana Harrell Chesson Robin Curtis Julianne Gee Elissa Meites Jeanne Santoli Mona Saraiya Shannon Stokley Lakshmi Sukumaran Elizabeth Unger

#### Acknowledgements

Harrell Chesson Angela Cleveland Julia Gargano Rayleen Lewis Nancy McClung Elissa Meites Vidisha Singh

- Are there specific data ACIP would like presented?
- Are there specific options or other considerations the Work Group should address?

#### Thank You

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

